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5 Measures and integrals on product spaces

5.1 The Product of measures

De�nition 5.1. Let S, T be sets and M ⊆ P(S), N ⊆ P(T ) be algebras

of subsets. For (A,B) ∈ M×N we view A×B as a subset of S × T , called
a rectangle. We denote the set of rectangles by M×N ⊆ P(S × T ). Then,
M�N ⊆ P(S × T ) denotes the algebra generated by the set of rectangles.

We also call this the product algebra. Similarly, M�N denotes the σ-algebra
generated by M�N which we call the product σ-algebra.

Proposition 5.2. M�N consists of the �nite disjoint union of elements of

M×N .

Proof. Exercise.

Proposition 5.3. Let M′, N ′ be the σ-algebras generated by M and N
respectively. Then,

N �M = N ′ �M′.

Proof. Exercise.

Lemma 5.4. Let (S,M), (T,N ) be measurable spaces. Let U ∈ M � N
and p ∈ S. Set Up := {q ∈ T : (p, q) ∈ U} ⊆ T . Then, Up ∈ N .

Proof. Let A denote the set of subsets V ⊆ S × T such that V ∈ M � N
and Vp ∈ N . Let (A,B) ∈ M×N . Then the rectangle A×B is in A since

(A×B)p = B if p ∈ A and (A×B)p = ∅ otherwise. Thus, all rectangles are in
A. Moreover, A is an algebra: Clearly ∅ ∈ A. Also, if V ∈ A, then ¬V ∈ A
since (¬V )p = ¬(Vp). Similarly, for A,B ∈ A we have (A ∩B)p = Ap ∩Bp.

So, M�N ⊆ A. But A is even a σ-algebra: Let (An)n∈N be a sequence of

elements of A. Then, (
⋃

n∈NAn)p =
⋃

n∈N(An)p. Thus, M �N ⊆ A. But

A ⊆ M�N by construction.

Lemma 5.5. Let (S,M), (T,N ), (U,A) be measurable spaces and f : S ×
T → U a measurable map, where S×T is equipped with the product σ-algebra
M �N . For p ∈ S denote by fp : T → U the map fp(q) := f(p, q). Then,

fp is measurable for all p ∈ S.

Proof. Let V ∈ A. Then, f−1
p (V ) = (f−1(V ))p, using the notation of

Lemma 5.4. But by that same Lemma, (f−1(V ))p ∈ N .

Theorem 5.6. Let (S,M, µ) and (T,N , ν) be measure spaces with σ-�nite
measures. Then, there exists a unique measure µ�ν on the measurable space

(S × T,M�N ) such that for sets of �nite measure A ∈ M and B ∈ N we

have

(µ� ν)(A×B) = µ(A)ν(B).
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Proof. At �rst we assume the measures to be �nite. It is clear from Proposi-

tion 5.2 that µ�ν, if it exists, is uniquely determined onM�N by additivity.

A priori it is not clear, however, if µ� ν can be well de�ned even merely on

M�N , since a given element of M�N can be presented as a disjoint union

of rectangles in di�erent ways. For U ∈ M�N de�ne αU : S → R+
0 by

αU (p) := ν(Up). If U = A × B is a rectangle, we have αU (p) = χA(p)ν(B)
for p ∈ S. In particular, αU is integrable on S and we have

µ(A)ν(B) =

∫
S
αU dµ.

For U a �nite disjoint union of rectangles the function αU is simply the

sum of the corresponding functions for the individual rectangles and is thus

integrable on S. In particular, we must have

(µ� ν)(U) =

∫
S
αU dµ,

incidentally showing that µ� ν is well de�ned on M�N .

We proceed to show that µ � ν is countably additive on M�N . Let

{Un}n∈N be an increasing sequence of subsets of M�N such that U :=⋃
n∈N Un ∈ M�N . Then, {αUn}n∈N is an increasing sequence of integrable

functions on S such that∫
S
αUn dµ ≤

∫
S
αU dµ = (µ� ν)(U) ∀n ∈ N.

Hence we can apply the Monotone Convergence Theorem 3.29. Since αUn

converges pointwise to αU we must have

lim
n→∞

∫
S
αUn dµ =

∫
S
αU dµ.

That is, limn→∞(µ� ν)(Un) = (µ� ν)(U), implying countable additivity. It

is now guaranteed by Hahn's Theorem 2.35 and Proposition 2.36 that µ� ν
extends to a measure on M�N , and uniquely so.

It remains to consider the case of σ-�nite measures. Exercise.

Exercise 31. Show whether the operation of taking the product measure is

associative.

Exercise 32. Show that the Lebesgue measure on Rn+m is the product

measure of the Lesbegue measures on Rn and Rm.

In the following we denote the completion of a σ-algebra A with respect

to a given measure by A∗.

Lemma 5.7. Let (S,M, µ) and (T,N , ν) be measure spaces with σ-�nite
complete measures. Let Z ∈ (M �N )∗ of measure 0. Then, for almost all

p ∈ S we have ν(Zp) = 0.
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Proof. We consider �rst the case that the measures are �nite. For all n ∈ N
de�ne Yn := {p ∈ S : ν(Zp) ≥ 1/n}. Now �x n ∈ N and j ∈ N. Since

the algebra N�N generates the σ-algebra N � M, Theorem 2.35, implies

that there is a sequence of disjoint rectangles {Aj,k × Bj,k}k∈N such that

Z ⊆ Rj and (µ � ν)(Rj) < 1/(nj), where Rj :=
⋃∞

k=1(Aj,k × Bj,k). De�ne

now Xj := {p ∈ S : ν((Rj)p) ≥ 1/n}. Obviously, Yn ⊆ Xj . Moreover, Xj is

measurable since p 7→ ν((Rj)p) =
∑∞

k=1 χAj,k
(p)ν(Bj,k) is measurable, being

a pointwise limit of measurable functions (Theorem 2.19). We have then,

(µ� ν)(Rn) =
∞∑
k=1

µ(Aj,k)ν(Bj,k) =
∞∑
k=1

∫
S
χAn,k

(p)ν(Bj,k) dµ(p)

=

∫
S

∞∑
k=1

χAn,k
(p)ν(Bj,k) dµ(p) =

∫
S
ν((Rj)p) dµ(p)

≥
∫
Xn

ν((Rj)p) dµ(p) ≥
∫
Xj

1

n
dµ =

1

n
µ(Xn)

(Exercise.Justify the interchange of sum and integral!) Thus we get the

estimate µ(Xj) < 1/j. Repeating the construction for all j ∈ N set X :=⋂∞
j=1Xj . We then have Yn ⊆ X, but µ(X) = 0. Thus, since µ is complete,

Yn is measurable and has measure 0. This in turn implies that Y := {p ∈
S : ν(Zp) > 0} =

⋃∞
n=1 Yn has measure 0 as required. Exercise.Complete

the proof for the σ-�nite case!

5.2 Fubini's Theorem

Lemma 5.8. Let (S,M, µ) and (T,N , ν) be measure spaces with σ-�nite
measures. Let A×B ⊆ S×T be a rectangle such that 0 < (µ�ν)(A×B) < ∞.

Then, 0 < µ(A) < ∞ and 0 < ν(B) < ∞.

Proof. Exercise.

Lemma 5.9. Let (S,M, µ) and (T,N , ν) be measure spaces with σ-�nite
complete measures. Let {(λ1, A1, B1), . . . , (λn, An, Bn)} be triples of ele-

ments of K,N ,M respectively and such that 0 ≤ µ(Ai) < ∞ and 0 ≤
ν(Bi) < ∞. De�ne g : S × T → K by

g(p, q) :=
n∑

k=1

λkχAk
(p)χBk

(q).

Then, gp ∈ S(T, ν) for all p ∈ S and

p 7→
∫
T
gp dν
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de�nes a function in S(S, µ) satisfying∫
S

(∫
T
gp dν

)
dµ(p) =

∫
S×T

g d(µ� ν).

Proof. Exercise.

Theorem 5.10 (Fubini's Theorem, Part 1). Let (S,M, µ) and (T,N , ν) be
measure spaces with σ-�nite complete measures and f ∈ L1(S × T, (M �
N )∗, µ� ν). Then, fp ∈ L1(T,N , ν) for almost all p ∈ S and

p 7→
∫
T
fp dν

de�nes almost everywhere a function in L1(S,M, µ) satisfying∫
S

(∫
T
fp dν

)
dµ(p) =

∫
S×T

f d(µ� ν).

Proof. By Proposition 3.23 there is a sequence {fn}n∈N of integrable simple

functions, measurable with respect to M�N , that converges to f in the

‖ · ‖1-seminorm. Each function fn can be written as a linear combination

of characteristic functions on elements of M�N with �nite measure. By

modifying fn if necessary, but without a�ecting convergence of the sequence

we can also arrange that the supports of the characteristic functions all have

non-negative measure. Due to Theorem 3.24, by replacing {fn}n∈N with a

subsequence if necessary, we can ensure moreover pointwise convergence to

f , except on a set N of measure zero. Taking into account Lemma 5.8 we

notice that the functions fn satisfy the conditions of Lemma 5.9.

By Lemma 5.7, there exists a subset X ⊆ S with measure 0 such that

ν(Np) = 0 if p /∈ X. Fix for the moment p ∈ S \ X. Then, {(fn)p}n∈N
converges to fp pointwise outside Np. Moreover, since the (fn)p are mea-

surable with respect to (T,N ) by construction, so is fp outside of Np due

to Theorem 2.19. But, Zp has measure zero and (T,N , ν) is complete by

assumption, so fp is measurable everywhere.

Since {fn}n∈N is Cauchy, we can restrict to a subsequence such that

‖fl − fk‖1 < 2−2k ∀k ∈ N,∀l ≥ k.

By applying Lemma 5.9 to |fl − fp|, we have for all k ∈ N and l ≥ k,∫
S
‖(fl)p − (fk)p‖1,ν dµ(p) =

∫
S

(∫
T
|(fl)p − (fk)p|dν

)
dµ(p)

=

∫
S

(∫
T
|fl − fk|p dν

)
dµ(p) =

∫
S×T

|fl − fk|d(µ�ν) = ‖fl−fk‖1 < 2−2k.
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Now for k ∈ N set Yk ⊆ S to

Yk :=
{
p ∈ S : ‖(fl)p − (fk)p‖1,ν ≥ 2−k

}
.

Then, for all k ∈ N,

2−kµ(Yk) ≤
∫
Yk

‖(fk+1)p − (fk)p‖1,νdµ(p)

≤
∫
S
‖(fk+1)p − (fk)p‖1,νdµ(p) ≤ 2−2k.

This implies, µ(Yk) ≤ 2−k for all k ∈ N. De�ne now Zj :=
⋃∞

k=j Yk for all

j ∈ N. Then, µ(Zj) ≤ 21−j for all j ∈ N.
Fix j ∈ N and let p ∈ S \ Zj . Then, for k ≥ j we have

‖(fk+1)p − (fk)p‖1,ν < 2−k.

This implies for k ≥ j and l ≥ k,

‖(fl)p − (fk)p‖1,ν < 21−k.

In particular, {(fn)p}n∈N is a Cauchy sequence with respect to the ‖ · ‖1,ν-
seminorm. Since j was arbitrary, this remains true for p ∈ S \ Z, where
Z :=

⋂∞
j=1 Zj . Note that µ(Z) = 0. Now let p ∈ S \ (X ∪ Z). Since

{(fn)p}n∈N converges to fp pointwise almost everywhere, and fp is measur-

able, Proposition 3.25 then implies that fp is integrable and that {(fn)p}n∈N
converges to fp in the ‖ · ‖1,ν-seminorm.

Now de�ne

hn : p 7→
∫
T
(fn)p dν

By Lemma 5.9 this is an integrable simple map and by the previous argu-

ments it converges pointwise outside of X ∪ Z to

h : p 7→
∫
T
(f)p dν.

Thus, h is measurable in S \ (X ∪Z) by Theorem 2.19 and can be extended

to a measurable function on all of S, for example by setting h(p) = 0 if

p ∈ X ∪ Z. On the other hand, {hn}n∈N is a Cauchy sequence with respect

to the ‖ · ‖1,µ-seminorm since, for all l, k ∈ N,

‖hl − hk‖1,µ =

∫
S
|hl − hk|dµ =

∫
S

∣∣∣∣∫
T
((fl)p − (fk)p) dν

∣∣∣∣dµ(p)
≤

∫
S

(∫
T
|(fl)p − (fk)p|dν

)
dµ(p) = ‖fl − fk‖1
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and {fn}n∈N is Cauchy. Thus, by Proposition 3.25, h is integrable and

{hn}n∈N converges to h in the ‖ · ‖1,µ-seminorm. Then,∫
S×T

f d(µ� ν) = lim
n→∞

∫
S×T

fn d(µ� ν) = lim
n→∞

∫
S

(∫
T
(fn)p dν

)
dµ(p)

= lim
n→∞

∫
S
hn dµ =

∫
S
h dµ =

∫
S

(∫
T
fp dν

)
dµ(p).

Lemma 5.11. Let (S,M, µ) and (T,N , ν) be measure spaces with σ-�nite
complete measures and f : S×T → K measurable with respect to (M�N )∗.
Then, for almost all p ∈ S, fp is measurable with respect to N .

Proof. By Proposition 2.30, there is a function g : S × T → K that is

measurable with respect to M�N and such that g coincides with f at least

outside a set N ∈ M � N of measure 0. By Lemma 5.5, gp is measurable

for all p ∈ S. By Lemma 5.7, ν(Np) = 0 for all p ∈ S \ Y , where Y ∈ N is

of measure 0. Let p ∈ S \ Y , then gp coincides with fp almost everywhere

and since (T,N , ν) is complete fp must be measurable.

Theorem 5.12 (Fubini's Theorem, Part 2). Let (S,M, µ) and (T,N , ν)
be measure spaces with σ-�nite complete measures and f : S × T → K be

measurable with respect to (M � N )∗. Suppose that fp ∈ L1(T,N , ν) for

almost all p ∈ S. Moreover suppose that the function

p 7→
∫
T
|fp|dν

de�ned almost everywhere in this way is in L1(S,M, µ). Then, f ∈ L1(S ×
T, (N �M)∗, µ� ν).

Proof. Denote by X ∈ M a set of measure 0 such that fp ∈ L1(T,N , ν) for
p ∈ S \X. By Theorem 2.23 there exists a an increasing sequence {fn}n∈N of

simple functions fn : S × T → R+
0 with respect to (M�N )∗ that converges

pointwise to |f |. Moreover, because of σ-�niteness the fn can be chosen to

have �nite support. (Exercise.Explain!) In particular, this implies that

each fn is integrable. Applying Theorem 5.10 to fn yields a set Nn ∈ M
of measure 0 such that (fn)p ∈ L1(T,N , ν) for all p ∈ S \Nn. Moreover, it

implies that hn : S → R+
0 de�ned by hn(p) :=

∫
T (fn)p dν for p ∈ S \Nn and

hn(p) = 0 otherwise, is integrable. Also it implies,∫
S
hn dµ =

∫
S×T

fn d(µ⊗ ν)

Let N :=
⋃

n∈NNn. This has measure 0. Note that since fn ≤ f for all

n ∈ N we also have hn(p) ≤
∫
T |fp|dν for all p ∈ S \ {N ∪ X}. Putting
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things together we get for all n ∈ N∫
S×T

fn d(µ⊗ ν) =

∫
S
hn dµ ≤

∫
S

∫
T
fp dν

Thus, by the Monotone Convergence Theorem 3.26, fnn∈N converges point-

wise almost everywhere to an integrable function. But fnn∈N converges

pointwise to |f |, which is measurable, so |f | must be integrable. Then,

by Proposition 3.30, f is integrable.


